Journal of Orgonometoilic Clremistry. 90 **(1974)** *49-52 @* **Ekevier Sequoia S-A.. Lausanne - hinted in The Netherlands**

THE MECHANISM OF SUBSTITUTION OF π -(PhCH=CHCOR)Fe(CO), COMPLEXES WITH PPh₃, AsPh₃ AND SbPh₃

G. CARDACI and G. CONCETTI

Institute of Physical Chemistry, University of Perugia, Perugia (Italy)

(Received November 11 th. 1974)

Summary

The reaction between π -(PhCH=CHCOR)Fe(CO)₃ (R = H, CH₃, Ph) and L $(L = PPh_3, AsPh_3, SbPh_3)$ in acetone occurs in two steps. The products of the first step are the π -(PhCH=CHCOR)Fe(CO)₃L complexes, which in the second step yield $Fe(CO)$ ₃L₂ and π -(PhCH=CHCOR)Fe(CO)₂L. The kinetic results indicate that the first step is association of the substrate with the ligand. The variation of the ratio $[Fe(CO)_3L_2]/[T-(PhCH=CHCOR)Fe(CO)_2L]$ with L suggests three different reaction paths for the second step.

Introduction

Reactions between **Group** V **ligands and organometallic carbonyl com**plexes have been studied extensively and substitution of the hydrocarbon [**11 or** of the CO [2] group has been observed. This behaviour was also observed for the π -dieneiron tricarbonyl [3] and π -heterodieneiron tricarbonyl [4, 5] complexes.

In this work we have studied the behaviour of π -(PhCH=CHCOR)Fe(CO)₃ complexes in an attempt to detect **the** formation of intermediate olefinic π -(PhCH=CHCOR)Fe(CO)₃L complexes.

During completion of this work, other authors [6] reported the formation of π -(RCH=CHCOR')Fe(CO)₃L complexes with very basic phosphinic ligands.

Experimental

The complexes π -(PhCH=CHCOR)Fe(CO)₃ (R = H, CH₃, Ph) were prepared as described elsewhere [5,7] .

The complexes π -(PhCH=CHCOR)Fe(CO)₂L (L = PPh₃, AsPh₃, SbPh₃) were freed from the disubstituted $Fe(CO)_3L_2$ complexes by chromatography on $\rm Al_2O_3$ using hexane as supporting liquid, and a 1/3 mixture of $\rm CH_2Cl_2/hexane$ as **eluent.**

IR STRETCHlNG FREQUENCLES FOR n-(PhCH=CHCOR)Fe(CO)jL AND rr_(PhCH=CHCOR)Fe<CO)zL COMPLEXES IN HEXANE

The complexes π -(PhCH=CHCOR)Fe(CO)₃L were not separated but were identified by their IR CO stretching bands (Table 1). The structure of these complexes is probably trigonal bipyramidal, as observed for other $Fe⁰$ complexes [S]. The three stretching bands of the CO group suggest that neither PPh₃ nor PhCH=CHCOR ligands are simultaneously apical in the bipyramid, but probably $PPh₃$ is in the apical and $PhCH=CHCOR$ is in the equatorial position.

The kinetic runs were performed using a ten-fold excess of $PPh₃$ in carefully deaerated acetone. The pseudo-first-order **rate constants were measured** by following the disappearance of the CO stretching band at the higher frequency of the reacting complex and the appearance of the **CO** stretching frequency due to $Fe(CO)_{3}(PPh_{3})_{2}$; at $[PPh_{3}] < 10^{-1}M$, these rate constants are equal within the limits of experimental error, at $[PPh_3] > 10^{-1}$ M the rate constants differ and the formation of the intermediate π -(PhCH=CHCOR)- $Fe(CO)₃L$ is observed.

Spectrophotometric measurements were carried out in NaCl cells on a Perkin-Elmer 257 instrument. The temperature of reaction was 40".

Results **and discussion**

The stoichiometry of the reaction is as follows:

 π -(PhCH=CHCOR)Fe(CO)₃ + (1 + α) L → α Fe(CO)₃L₂ + $(1 - \alpha) \pi$ ·(PhCH=CHCOR)Fe(CO)₂L + (1 - α) CO + α (PhCH=CHCOR) (1)

 α is the fraction of Fe(CO)₃L₂ per mole of the reacting complex.

The reaction occurs in two steps. In the first, π -(PhCH=CHCOR)Fe(CO)₃L complexes are formed and the kinetic results (Table 2) show that this step is of second-order and the mechanism is associative with the ligand PPh_3 .

The intermediate π -(PhCH=CHCOR)Fe(CO)₃L complexes react further to yield $Fe(CO)_3L_2$ and π -(PhCH=CHCOR)Fe(CO)₂L complexes in the ratio

TABLE 1

Fig. 1. Plot of $\alpha/(1-\alpha)$ vs. PPh₃ for reaction 1 in acetone at 40^o with R = H (a), CH₃ (b), Pb (c).

 $\alpha/1 - \alpha$. This ratio increases with the concentration and the basicity of the ligand L. Figure 1 shows the plot of the $\alpha/1 - \alpha$ versus the concentration of PPh₃; this plot is linear and the intercept is non-zero.

These experimental results may be explained on the basis of Scheme 1.

TABLE 2

SCHEME 1 *3 **I-** $m - \pi$ -(FnCH=CHCOR)Fe(CO)2L + CO N -{PnCH==CHCO3}Fe(CO),L \rightarrow +L \rightarrow N -{PnCH==CHCO3}Fe(CO),L \rightarrow Fe(CO),L + PhCH=CHCOR Jr, +L I I FelCO)₁L, + PhCH≡CH
+L

If k_4 [L] $\ge k_2$, as is reasonable, the ratio $\alpha/(1 - \alpha)$ is given by eqn. 2. This ac-

$$
\frac{\alpha}{1-\alpha} = \frac{k_2}{k_3} \left[L \right] + \frac{k_2'}{k_3} \tag{2}
$$

counts for the linear trend in Fig. 1.

On the basis of expression 2 the values k_1/k_3 , k'_1/k_3 and k_2/k'_2 are obtained and are given in Table 2.

Equation 2 shows that $Fe(CO)$ ₃L₂ is formed by two parallel pathways, one associative with L and the other dissociative. This mechanism is different from that observed with square planar olefinic **complexes [9] which** react by an associative mechanism and with octahedral olefinic complexes $[10]$, which react by a dissociative mechanism.

The ratio k_2 / k_2' gives the rate of the associative relative to that of the dissociative path for the formation of $Fe(CO)$ ₁L₂; the ratio values decrease in the order Ph $> H > CH₃$, thus, the CH₃ substituent favours the dissociative path, in accord with substituent effects found in the olefinic complexes studied previously [11].

At this stage of the investigation it is impossible to say whether or not the formation of the π -(PhCH=CHCOR)Fe(CO)₂L complexes proceeds via an intramolecular chelation mechanism, particularly in view of the results obtained for the formation of π -(PhCH=CHCOR)Fe(CO), from π -(PhCH= $CHCOR)Fe(CO)$; [12].

References

- 1 F. Zingales, A. Chiesa and F. Basolo, J. Amer. Chem. Soc., 88 (1966) 2707: A. Pidcock and B.W. **Taylor. J. Chem. Sot. A. (1967) 877.**
- **2 T.A. Manuel md F.G.A. Stone. J. Amer. Chem. Sot.. 82 (1960) 366.**
- 3 A. Reckziegel and M. Bigorgne, J. Organometal. Chem., 3 (1965) 341.
- **4 S. 0fsuk.a. T. Yosblda and A. h'akamua. Inorg. Chem.. 6 (1967) 20.**
- **5 X-M. Brodic. B.F.G. Johnson.** P.L. Jony **and J. Lewu** J. Chem. Sot. Dalton. **(1972)** 2031.
- **6 A.** Vrssieresand **A. Diroeuf. Teuahedroo Lert.. (197-I) 1499.**
- **7 E. Koerner Van Custorf. F.W. GrewIs. C. Kriiger.G. Olbrich. F. Mark. D. Shuiz and R. Wagner. 2. Naturforsch B. 27 (1972) 393.**
- 8 A.R. Luxmoore and M.R. Truter, Acta Crystallogr., 15 (1962) 1117: **C. Pedoueand A. Suigu. Inorg. Chem.. 7 (1968) 2614.**
- **9 C.E. Holloway and J. Fogelman. Can. J. Chcm.: -I8 (1970) 3802.**
- **10 M. Wrighton. G.S. Hammond and H.B. Gray. J. Amer. Chem. Sot.. 93 (1971) 6048.**
- 11 G. Cardaci and V. Narciso, J. Chem. Soc. Dalton, (1972) 2289;
- **G. Cardaci_ Iat J. Chem. Kiaet.. 5 (1973) 805.**
- **12 G. Cardaci. J. Amer. Chem. Sot.. in press**